
Deep learning of immune cell differentiation
Alexandra Maslovaa,b,1, Ricardo N. Ramirezc,1, Ke Mad, Hugo Schmutzc, Chendi Wanga,b

, Curtis Foxd,
Bernard Nga,b

, Christophe Benoistc,2,3, Sara Mostafavia,b,e,f,2,3, and Immunological Genome Project

aDepartment of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; bDepartment of Medical Genetics, University of British Columbia,
Vancouver, BC V6T 1Z4, Canada; cDepartment of Immunology, Harvard Medical School, Boston, MA 02115; dDepartment of Computer Science, University of
British Columbia, Vancouver, BC V6T 1Z4, Canada; eCanadian Institute for Advanced Research, CIFAR AI, Toronto, ON M5G 1M1, Canada; and fVector
Institute, Toronto, ON M5G 1M1, Canada

Contributed by Christophe Benoist, August 26, 2020 (sent for review June 24, 2020; reviewed by Anshul Kundaje and Ellen V. Rothenberg)

Although we know many sequence-specific transcription factors
(TFs), how the DNA sequence of cis-regulatory elements is
decoded and orchestrated on the genome scale to determine im-
mune cell differentiation is beyond our grasp. Leveraging a gran-
ular atlas of chromatin accessibility across 81 immune cell types,
we asked if a convolutional neural network (CNN) could learn to
infer cell type-specific chromatin accessibility solely from regula-
tory DNA sequences. With a tailored architecture and an ensemble
approach to CNN parameter interpretation, we show that our
trained network (“AI-TAC”) does so by rediscovering ab initio
the binding motifs for known regulators and some unknown ones.
Motifs whose importance is learned virtually as functionally im-
portant overlap strikingly well with positions determined by chro-
matin immunoprecipitation for several TFs. AI-TAC establishes a
hierarchy of TFs and their interactions that drives lineage specifi-
cation and also identifies stage-specific interactions, like Pax5/Ebf1
vs. Pax5/Prdm1, or the role of different NF-κB dimers in different
cell types. AI-TAC assigns Spi1/Cebp and Pax5/Ebf1 as the drivers
necessary for myeloid and B lineage fates, respectively, but no
factors seemed as dominantly required for T cell differentiation,
which may represent a fall-back pathway. Mouse-trained AI-TAC
can parse human DNA, revealing a strikingly similar ranking of
influential TFs and providing additional support that AI-TAC is a
generalizable regulatory sequence decoder. Thus, deep learning
can reveal the regulatory syntax predictive of the full differentia-
tive complexity of the immune system.

artificial intelligence | gene regulation

The immune system has a wide array of physiological func-
tions, which range from surveillance of the homeostasis of

body systems to defenses against a diversity of pathogens. Ac-
cordingly, it includes a wide array of cell types, from large
polynuclear neutrophils with innate ability to phagocytose bac-
teria to antibody-producing B cells to spore-like naïve T cells
whose effector potential becomes manifest upon antigenic
challenge. With the exception of rearranged receptors, all
immunocytes share the same genome, and this phenotypic di-
versity must thus unfold from the genome blueprint, each cell
type having its own interpretation of the DNA code. This dif-
ferential usage is driven by the interplay of constitutive and cell
type-specific transcription factors (TFs), regulatory RNA mole-
cules, and possibly yet unknown sequence-parsing molecular entities.
Antigen recognition and effector potential are anchored in the

cell’s transcriptome, itself a reflection of the conformation of
DNA within chromatin that enables the expression of accessible
genes, directly or as modulated by triggers from cell receptors
and sensors. Recent technical advances reveal chromatin acces-
sibility with high precision and across the entire genome (1),
providing reliable charts of chromatin structure through immune
cell types (2–5). In these, open chromatin regions (OCRs)
reflected quite closely gene expression in the corresponding cells.
The question then is to move from these descriptive charts to an
understanding of how these chromatin patterns are determined.
Analyzing the representation of transcription factors binding
motifs (TFBS) in these differentially active OCRs provided some

clues as to the TFs potentially responsible for cell specificity,
especially by using the cell type-specific expression of the TFs
themselves as a correlative prior (2). Although motif enrichment
analysis is a mature tool, it relies on imperfect TFBS tables as-
sembled from different sources of data, with unavoidable noise.
More importantly, functional and cellular relevance of the se-
quence patterns is only inferred correlatively from the enrichment.
Artificial neural networks present a powerful approach that

can learn complex and nonlinear relationships between large sets
of variables and can recognize patterns whose combinations are
predictive of multifaceted outcomes. Convolutional neural net-
works (CNNs) in particular can learn the combinatorial patterns
embedded within input examples without the need for alignment
to predetermined references. Recent studies have begun to take
advantage of CNNs to tackle aspects of gene regulation (6), in-
cluding models that predict chromatin state (7–9), TF binding
(10, 11), polyadenylation (12), or gene expression (7, 13) solely
on the basis of DNA (100 bp to 1 Mb) or RNA sequences, with
the potential to ferret out relevant motifs.
The ImmGen consortium has recently applied ATAC-seq to

generate an exhaustive chart (532,000 OCRs) of chromatin
accessibility across the entire immune system of the mouse
(81 primary cell types and states directly ex vivo) (2). The data
encompass the innate and adaptive immune systems, differentiation
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cascades of B and T lymphocyte lineages, and detailed splits of
myeloid subsets at baseline or after activation. We reasoned that
it might provide the power to push the boundaries of what CNNs
can learn, in terms of 1) learning, solely from the DNA sequence
of the OCRs, their pattern of activity in primary differentiated
cells that span the immune system at high cell-type granularity
and 2) robustly interpreting parameters of complex CNNs to
identify the sequence motifs and their combination that result in
these predictions. The results showed that the CNN model we
derived (referred to as “AI-TAC”) can learn to accurately pre-
dict the fine specificity of cell type-specific OCRs. Further, our
model interpretation strategy was able to uncover motifs that are
influential in silico and recapitulated the binding sites of their
molecular counterparts in “real” chromatin immuno precipita-
tion and sequencing (ChIP-seq) data. Thus, AI-TAC learns the
sequence syntax that underlies the globality of immune cell
differentiation.

Results
AI-TAC Can Predict Enhancer Activity from Sequence Alone. We de-
veloped and trained a deep CNN, hereafter AI-TAC, to predict
the chromatin accessibility profiles across 81 immune cell types
on the basis of DNA sequences alone. In this way, AI-TAC
learns the relationship between the combination of sequence
motifs embedded within an OCR and its accessibility profile
across varying immune cell types. Fig. 1A schematizes the steps
of training, interpretation, and biochemical validation. In prac-
tice, the model was trained by using as input 90% of 327,927
sequences underlying each of the OCRs defined by our recent
ATAC-seq effort (2) to predict as output the profiles of ATAC-
seq of each OCR across all measured cell types. The ability of
the CNN to learn an accurate mapping between inputs and
outputs depends on several hyperparameters (number of hidden
layers, filters and their length, loss function), and these were
explored systematically (SI Appendix, Fig. S1). Bayesian optimi-
zation (14) showed that an architecture with three convolutional
layers followed by two fully connected layers, with 19-bp se-
quence detected by the 300 first-layer filters, resulted in lowest
achieved error on the validation data (SI Appendix, Fig. S1 A and
B). We also found that the form of the loss function resulted in
differential ability to predict cell type-specific activity profiles:
using Pearson correlation as the loss function metric enhanced
the ability of the model to accurately predict sequences whose
activity varies across cell types (P = 10−89) (SI Appendix, Fig.
S1 C and D). On a subset of held-back OCRs, the trained
AI-TAC model showed good performance on precisely predicting
granularly variable accessibility across all populations, as shown
for one example in Fig. 1B. Overall, 61% of test OCRs were
predicted with a statistically significant correlation coefficient (at
false discovery rate [FDR] 0.05) (Fig. 1C and SI Appendix). We
observed a largely monotonic relationship between the predict-
ability of an OCR and the variability of its accessibility across
immune cell types, as OCRs with low prediction performance
typically had small coefficients of variation (Fig. 1 D and E). This
graph also indicates that the model is not missing out on particular
classes of OCRs beyond those that are ubiquitously active (as
confirmed in the heat map of Fig. 1F).
We assessed the robustness of these predictions by performing

several randomization experiments to create 3 different null
models (Fig. 1C and SI Appendix, Fig. S2A), as well as per-
forming chromosome leave-out experiments (SI Appendix, Fig.
S2B). In addition, we performed 10 independent trials of 10-fold
cross-validation (i.e., 100 trained models) so that each of the
327,927 OCRs was considered as part of 10 different test sets (SI
Appendix, Fig. S2 C and D). These data allowed us to confirm
that well-predicted OCRs were generally well predicted across
different models trained on different subsets of the data, suggesting
that regulatory logic captured by the model was generalizable.

Learned Motifs Are Associated with Known Pioneer Factors and Their
Lineage Specificity. We next sought to interpret AI-TAC’s pa-
rameters to understand the sequence-based logic it learned that
enabled its accurate predictions on variable OCRs. While there
is a growing number of approaches for extracting important
features from trained neural networks (15), less attention has
been given to the uncertainty in feature importance: because of
the nonconvexity of the problem, even two runs of the same
model on the same training data can result in major differences
in the learned model parameters. Here, to robustly identify the
regulatory syntax learned by the AI-TAC model, we combined
three approaches and concepts: 1) node (filter)-based inter-
pretation coupled with sensitivity analysis, 2) gradient-based
methods [e.g., DeepLift (16)] coupled with clustering [TFMo-
Disco (17)], and 3) reproducibility analysis. As discussed in
Methods, we concluded that reproducibility analysis is critical to
robust feature extraction, and after taken into account, both
node (filter)-based and gradient approaches yield similar re-
sults in terms of global feature importance (SI Appendix, Fig.
S3). Thus, we focus below on ensemble filter-based model in-
terpretation.
For each of the 300 first-layer filters, we extracted the short

sequence motif that activates it, represented as a position weight
matrix (PWM), and defined operational parameters of its ro-
bustness: reproducibility (how often its motif recurs in inde-
pendently trained models), influence (how much it contributes to
the prediction accuracy), frequency (how many OCRs in the
dataset activate it), and information content (IC) (Methods,
Dataset S1, and SI Appendix, Fig. S4A). Combining the charac-
teristic parameters revealed two major groups among these
trained first-layer filters (Fig. 2A): filters in the first group (e.g.,
133, 167, etc.) were rediscovered repeatedly in every or almost
every independent training run and had high influence (>10−4)
and IC, with typically short (8- to 12-bp) consensus motifs rem-
iniscent of typical TF binding sites. The second group (e.g., 259,
37, 249, 241) had far less reproducibility, influence, and IC, with
motifs that only included a few scattered bases or were less fo-
cused (∼15-bp long). Some of these low-influence and non-
reproducible filters may represent noise in the neural network
(18) or yet unknown regulatory motifs whose similarity structure
may escape conventional alignment algorithms. We focused the
rest of the analysis on the 99 reproducible filters, as a model
retrained using these had only a small drop in performance as
compared with the full model (SI Appendix, Fig. S4 B and C) (99
altogether). As illustrated in Fig. 2B, reproducible filters parti-
tioned between filters with restricted distribution (activating 103

to 104 OCRs) and generally higher influence and a group of
more frequently activated filters with overall lower influence and
IC. To identify known motifs associated with the learned PWMs,
we searched the Cis-BP database of TF motifs (19) using the
TomTom algorithm (20); 101 of the 300 learned PWMs corre-
sponded to at least one known TF motif at q value < 0.05
(Dataset S2), and interestingly, the majority of these annotated
PWMs belonged to the set of reproducible filters: 76 of 99 re-
producible filters correspond closely to known TF motifs, many
with astonishing similarity (as illustrated for Runx, Ets, and Ctcf
in Fig. 2C). In 10 cases, the model also discovered exact reverse
complements of the same motif (e.g., Ctcf in Fig. 2C).
The regulatory landscape of chromatin opening throughout

immune cell differentiation, as learned de novo by AI-TAC, can
thus be summarized by the 99 motifs displayed in Fig. 2D (given
the known complexities of TF motif assignments, which can re-
flect promiscuity and variation with cofactors or posttransla-
tional modifications, we opted for caution when several alternative
TFs were candidates, annotating several filters at the family level
only). We further refined the annotation of the most likely TF to
each motif by combining Cis-BP scores with the correlation between
activity of the OCR and expression of the TF across cell types
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(illustrated for Pax5 in SI Appendix, Fig. S5A); these correlations
were comparable for filters annotated to the same TF (Dataset S3
and SI Appendix, Fig. S5B). The resulting set rediscovered several

canonical regulators of lineage differentiation: Pax5, Ebf1, Spi1
(aka PU.1), and Gata3. Other TFs were perhaps less expected
in the context of cell-specific expression such as Ctcf, a

N
or

m
al

iz
ed

 a
ct

iv
ity

Peak 459141 Correlation = 0.946

True activity Prediction

0

6

0

6

B

-1 1-0.5 0.50
Prediction-ground truth correlation

Fr
eq

ue
nc

y

Shuffled cell-types
Real data

0

2000

4000

6000
C

0 0.2 0.4 0.6 0.8
CV

-0.6

-0.2
0

0.2

0.6

1

P
re

di
ct

io
n 

co
rr

el
at

io
nD

E F

Validation

Deep Neural Network

A

G
NB

D
C

M
F

IL
C M
o

α
βT γδ
T

S
te

m

Real Predicted

G
N

B D
C

M
F

IL
C

M
o

α
βT

γδ
T

S
te

m

G
N

B D
C

M
F

IL
C

M
o

α
βT

γδ
T

S
te

m

0 1 0 1Real OCR activity Predicted activity

G
NB

D
C

M
F

IL
C

M
o

α
β T γδ
T

S
te

m

GTCTCGTATGTCTGATGTCGAGTCGTAAGTC

AGTCTCGTATGTCTGAAGTCTCGTATGTCTG

TGTCCAGTCTCGTCTTCGATCGCTGAAGTCT...
GTCCTCGTATGAGTCTCGTCTAGTCTCGTGT

MF

B

ILC αβ T

γδT

Stem

DC

Mo

Act T

GN

...

Fig. 1. AI-TAC learns to predict cell-specific ATAC-seq activity from sequence composition across the mouse immune system. (A) Schematic of the AI-TAC
model and its validation. AI-TAC is a deep CNN that takes as input OCR sequences and outputs ATAC-seq accessibility profile for 81 mouse immune cells. The
sequence features (motifs) that are predictive of chromatin accessibility are learned during the training process. By analyzing the first- and later-layer filters,
we derive important motifs and their combinations that enable the model to make prediction for given OCRs. The predictions and motifs derived by AI-TAC
are validated against actual TF binding determined from ChIP-seq experiments. (B) Observed (Upper) and predicted (Lower) chromatin states of 81 immune
cell types for a single-test OCR. (C) Histogram of AI-TAC test set predictions trained on real data (orange) vs. a model trained and tested on samples with
randomly permuted chromatin accessibility profiles (blue). (D) The coefficient of variation of the test set OCR chromatin accessibility profile on the x axis vs.
the AI-TAC prediction correlation for those OCRs on the y axis. (E and F) Observed (Left) and predicted (Right) chromatin accessibility profiles for real OCRs
(rows) with E |corr| < 0.1 and with F corr > 0.8 across cell types (columns). Color (the legend is shown at the bottom of F) indicates normalized value of
accessibility (“peak height”) for each OCR in each cell type.
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ubiquitous TF better known for its structural role in nuclear
architecture (21), suggesting a cooperative role of Ctcf as an
adjunct to lineage-specific factors. A few influential TFs were
represented by several filters, usually with slightly different
motifs for the same TF (SI Appendix, Fig. S5C). These nuances
may correspond in part to technical noise from model over-
parameterization (18), but they are also expected from known

degeneracy in TF binding specificity, which is further influ-
enced by interactions within dimers, as exemplified by the NF-
κB family (22). AI-TAC filters indeed distinguished the ca-
nonical NF-κB heterodimer (filter 231) and homodimer (filter
247) motifs. Consistent with distinct biological roles, we also
observed specificity in the OCR maximal activation between
NF-κB filters, emphasizing unique sets of OCRs based on
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heterodimer and homodimer motif preferences (SI Appendix,
Fig. S5D) (R2 = 0.05). For a broader perspective on how AI-
TAC understands NF-κB family binding sites, we clustered the
PWMs of all filters annotated to NF-κB through 10 independent
training runs. Interestingly, the heterodimer motif resurfaced reg-
ularly, while other motifs were less frequently discovered or allowed
more sequence variation, suggesting gradations in their functional
importance (SI Appendix, Fig. S5E). Finally, several filters corre-
sponded to motifs with no significant matches in Cis-BP or similar

databases (SI Appendix, Fig. S6A). Some were short and plausibly
corresponded to half-sites, but others were longer and more
complex (e.g., filter 9 in SI Appendix, Fig. S6A), with relatively high
overall influence (SI Appendix, Fig. S6B), and may correspond to
unrecognized TFBS.

Learned Motifs Associated with Cell-Type Profiles. To directly assess
the relationship between motifs and cell types, we computed a
per cell-type influence profile, quantifying the predictive importance
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of each filter in each of the 81 immune populations (as the dif-
ference between predicted values with and without each filter)
(Fig. 3). This analysis revealed both positive and negative influ-
ences (Dataset S1). Several of these positive influences (where
the filter is needed for the full activation in the predicted pro-
files) were consistent with known roles of the corresponding TFs:
Pax5 and Ebf1 essential for B cell differentiation, Spi1 and Cebp
in myeloid cells, and Tbx21/Eomes in NK cells. AI-TAC iden-
tified granular specificity of TFs beyond lineage-level impor-
tance: for instance, in the B lineage, Pax5 showed pronounced
influence early in pro-B stages and late in germinal center
B cells, while Pou2f2 (Oct2) was influential only in the latter. In
myeloid cells, CEBP seems particularly influential in neutrophils,
monocytes, and tissue macrophages and less so in dendritic cells
(consistent with ref. 2) and in central nervous system microglia,
an interesting notion given that microglia have a distinct origin
from most other macrophage populations. No filter had the same
degree of influence for T cells as Cebp/Spi1 or Pax5/Ebf1 had for
myeloid and B cells.
More paradoxical were the negative influences (where the

predicted activity of OCRs is overestimated in its absence).
These occurred most prominently for the myeloid-specifying
motifs recognized by Spi1 or Cebp, but not for every strong fil-
ter (i.e., not for Pax5 or Tbx21 motifs). Thus, the neural network
used the presence of an Spi1 motif in an OCR to enforce its
inactivity in T cells, beyond the neutrality that might be expected
from a missing factor. Such negative influence may denote a
feature of the in silico learning process but may also reflect the
known need for Spi1 expression to be turned off for T cell dif-
ferentiation to occur (23).

Biochemical Validation of Predicted TF Binding. While the identities
of many motifs learned ab initio were striking and fit known
biology, it was important to validate the significance of these
observations. We first selected the 500 OCRs most influenced
by filter 167 (Pax5) (Fig. 4A). In accordance with expectations,
these OCRs were active in B cells, but not in thymic DPs
(Fig. 4 A, Right). We then examined the fit between the in silico
learned filters and the actual position of the corresponding TFs
in the genome, deduced from chromatin immunoprecipitation
(ChIP-seq). Overall, we observed a very strong concordance
between AI-TAC’s predictions and ChIP-seq data. As one ex-
ample, OCRs predicted to be influenced by filter 255 (Spi1)
recapitulated the two main binding sites of Spi1 in the Il1b
locus (Fig. 4B). More generally, the top OCRs influenced by
filters 167 (Pax5), 260 (Ebf1), and 166 (Lef1/Tcf7) strikingly
overlapped with binding sites defined by ChIP-seq for those
factors, relative to control OCRs (0.006 to 0.09; P < 0.003)
(Fig. 4C).
Finally, we analyzed deep ATAC-seq traces in B lymphocytes

at nucleotide-level resolution, where one can discern a “foot-
print” where the binding of a TF prevents or favors accessibility
by the Tn5 transposase (24). We superimposed deep (>200
million reads) ATAC-seq traces at positions predicted to activate
Pax5 or Ctcf filters in AI-TAC over true binding sites indepen-
dently determined known from ChIP-seq and motif identifica-
tion. Here again, AI-TAC–driven predictions accurately coincided
with true TF binding, showing the same fine details of accessibility
(Fig. 4D). Thus, whether in matching the distribution of TF
binding or the nucleotide-level traces to biochemically deter-
mined ones, AI-TAC in silico predictions are strongly validated
by in vivo data.

Dissecting the Combinatorial Logic of Chromatin Opening. That en-
hancer elements tend to occur as repeats has long been a theme,
either because those first discovered in viral genomes occurred
as tandem repeats or because synthetically engineered enhancers
were more effective as strings of the same motif. Thus, we asked

whether repeats of the same motif were enriched among active
OCRs. While this was not the case for the majority (SI Appendix,
Fig. S7D), two interesting exceptions were GC-rich motifs rec-
ognized by Sp (242), consistent with reports that SP1 functions
best in the context of repeated GC-rich blocs (25), and filter
231 (NF-κB-het), consistent with the demonstration that NF-κB
uses clustered binding sites noncooperatively to incrementally
tune transcription (26). On the other hand, activation of the
same filter by different OCRs that control the same gene
[likelihood determined by regression (2)] showed a significant
enrichment for repeats of the same motif compared with
chance (SI Appendix, Fig. S7E). Thus, tandem repeats of con-
trolling motifs within short segments of accessible chromatin
are not a regulatory strategy commonly employed to control
immune cell differentiation, but motif repetition is provided by
independent elements scattered around a gene, likely connected
by DNA loops.
Given the size of the vertebrate genomes, combinations of

transcriptional regulators are the only practicable solution to
encode the complexity of development and cell-type differen-
tiation (27). Pervasive interactions between TFs within multi-
molecular complexes have been observed in genomic and
functional experiments, but an overall perspective on the
combinatorial interactions that actually influence transcription
remains incomplete. It was thus of interest to ask which com-
binations of motifs are coinfluential in AI-TAC’s predictions.
Because the higher-order relationships between first-layer
motifs are encoded in the deeper layers of the network, an
obvious first attempt at identifying important filter combina-
tions is to look for combinations of motifs assembled by the
second-layer convolutional filters (12). We found that in a large
number of cases, the second-layer filters recognized similar (or
reverse complement) first-layer motifs, indicating that the
second layer is perhaps assembling cleaner versions of first-
layer motifs rather than learning combinatorial logic (SI Ap-
pendix, Fig. S8).
As an alternative, we identified for each OCR the set of filters

that impact the accuracy of its prediction (i.e., influence) by 5%
or more. Of the set of OCRs that were influenced by at least 1
filter at this threshold, many (n = 23,910, 56%) were influenced
by 2 to 6 filters, and a few (n = 1,514, 4%) were even impacted by
10 or more filters (Fig. 5A). This large set of OCRs impacted by
multiple filters provided a rich base to identify common coin-
fluential motifs. To identify influential combinations between
different TFs, we computed for each filter pair the number of
OCRs that they both impact and compared it with expected
coinfluence based on each filter’s prevalence. This analysis
yielded 493 coinfluential filter pairs (adjusted P < 0.05 and
number of co-occurrences >100) (Fig. 5B and Dataset S5). In-
terestingly, filters that are broadly influential tended to be sig-
nificantly coinfluential with each other (e.g., Ebf1 and Pax5, n =
193, P < 10e-20; Lef1/Tcf7 and Runx, n = 471, P < 10e-50).
Among overrepresented pairs, some TFs were highly recurrent,
acting as “hubs” of sorts: Tcf3 (filters 78/8/93), Runx (filter 10),
Ets (filter 11), and Nfat (filter 40) co-occurred with 40 or more
other filters (Dataset S5).
Some of these inferences in terms of motif coinfluence were

congruent with existing knowledge (e.g., Tbx21/Runx, Spi1/Cebp,
etc.), but to provide proof-of-principle validation, we again
turned to ChIP-seq data. Using Pax5 ChIP-seq datasets gener-
ated in pro-B and mature B cells (28), we asked what fraction of
the OCRs influenced by each AI-TAC filter overlapped with a
validated Pax5 binding site. As expected from Fig. 4C, OCRs
influenced by filters 167, 217, and 257 (all annotated as Pax5)
contained a high proportion of true Pax5 binding sites in both
pro-B and mature B cells (0.62 to 0.83) (Fig. 5C). Interestingly,
OCRs influenced by several other filters also contained a high
proportion of Pax5 binding sites, in particular filters 260 (Ebf1),
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89 (Irf1/Stat2/Prdm1), or 190 (Pou2f1). Finding Ebf1 associated
with Pax5-annotated filters is consistent with the known molec-
ular collaboration between Ebf1 and Pax5 in controlling B cell
identity (29–31). This conclusion was borne out by displaying
Pax5 and Ebf1 ChIP-seq signals in OCRs active in B cells,
showing that some OCRs preferentially bound one of these two
TFs and many both (Fig. 5D).
As another validation and to further identify combinatorial

signals, we compared ChIP-seq signals for Pax5 and Tcf7 (active
in T cells) in OCRs predicted to be activated by different filters.
OCRs influenced by Lef1/Tcf7 filters (166, 50, 80) were again
strongly enriched in Tcf7-bound sites in DPs (32) but had low
Pax5 signals in pro-B cells, while OCRs that activate Pax5 filters
and its associated Ebf1 and Pou2f filters were enriched in
Pax5 ChIP-seq signals in pro-B cells but low in Tcf7 (Fig. 5E).
OCRs that activated filters annotated to Sp1 (242) or bZip (51)
were enriched in Tcf7 ChIP-seq, confirming that these TFs in-
teract with Tcf7 (Dataset S5). Interestingly, AI-TAC predictions
recovered regulators Tcf3/E2a (112) and Ets (11, 252, 120) with
similar enrichments in Pax5- and Tcf7-bound sites, consistent
with known overlapping regulatory function in the specification
and maintenance of B and T lineages (33). Thus, combining AI-
TAC predictions with in vivo ChIP-seq data parsed TF binding
patterns with regulatory coinfluence at different stages of T or B
differentiation and resolved regulatory motifs represented in
Tcf7-bound sites across disparate T cell states.

TF cis-Regulatory Syntax Embedded in AI-TAC’s Fully Connected Layer.
The last fully connected layer of a neural network represents the
final nonlinear embedding of the input examples in the derived
feature space. To visualize this space, we represented each well-

predicted OCR by its activation values across the 1,000 neurons
of the last layer and projected these activation vectors in two
dimensions using the t-SNE algorithm (Fig. 6A). When OCRs in
this space were colored by their accessibility in different lineages,
lineage-specific activity mapped to different segments (Fig. 6B),
indicating that this last layer discriminates well between lineages.
Next, we analyzed how the influence of individual first-layer
filters (and corresponding TFs) projected in this space. The in-
fluence of Pax5 (filter 167) and Ebf1 (filter 260) was highest in
closely related poles of the B cell area, overlapping partially
(Fig. 6C), in accordance with Fig. 5E. Similarly, the influence of
Spi1 (filter 255) and Cebp (filter 34) in myeloid lineage OCRs
was distinguishable, with some OCRs influenced by both
(Fig. 6D), consistent with the known cooperativity of Spi1 and
Cebp across myeloid cell types (34). OCRs influenced by the NF
heterodimer (filter 65) and homodimer (filter 231) motifs
showed a different cell distribution, revealing a different pref-
erence in T and B lineages (SI Appendix, Fig. S9 A and B).
Among the patterns of OCR activity projected in this em-

bedding space, the stratification of OCRs accessible in innate
lymphoid cells (ILCs) was intriguing (Fig. 6B), as it demarcated a
cluster of OCRs distinct from all others. We cannot formally rule
out that this unusually strong demarcation of ILC-active OCRs
results from a technical artifact, although have no indication in
this sense. The dichotomy turned out to reflect a partition be-
tween OCRs active in NK cells vs. ILC3 (and to a lesser extent in
ILC2, colonic Treg and some Tgd cells) (SI Appendix, Fig. S9C).
OCRs active in NK cells were influenced by Tbx21/Eomes-re-
lated filter 106 (SI Appendix, Fig. S9D), but ILC3-preferential
OCRs were mainly influenced by filters annotated to the Nu-
clear Receptor (NR) family Nr1d1/Rorγ (68) and Nr2f6 (220)
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(SI Appendix, Fig. S9D; see also SI Appendix, Fig. 3A). The in-
fluence of these NRs is consistent with the demonstration of a role
for Nr1d1 in Ilc3 differentiation (35). Thus, chromatin activity and
TF control learned in silico appear very different for these groups
of ILCs.
Apart from predicting lineage-specific patterns, the last layer

also parsed a subset of OCRs with widespread activity across all
lineages (“Ubq” in Fig. 6A). These small clusters were charac-
terized by the influence of the ubiquitous TFs Sp/Klf (filter 242)
and Ctcf (filter 23/275) (SI Appendix, Fig. S9E), suggesting
common structural motifs. Interestingly, the influence by Ctcf
filters was also observed in clusters of more cell type-specific
OCRs, a disposition consistent with the notion that Ctcf par-
takes in the generic organization of DNA topologies in the nu-
cleus but also cooperates with cell type-specific TFs to form
specific loop and domain structures (21). Thus, AI-TAC’s final-
layer embedding of OCRs had the ability to refine lineage and
cell specificity through TF influence patterns, suggesting that
marginal influence estimates can serve as a proxy for the bio-
logical regulatory impact.

Cross-Species Generalization of AI-TAC Predictions. The ultimate test
of generalizability of a trained machine learning model requires
assessing its performance on independent/external datasets.
Because the human and mouse immune systems share many
regulatory nodes (36–38), and TFs and their motifs are conserved

across far wider evolutionary distance, we used cross-species
testing to assess AI-TAC predictions on unseen human OCRs
defined by a prior ATAC-seq analysis in 25 hematopoietic cell
types (5). We first used the ImmGen pipeline to preprocess the
human dataset, identifying 539,611 OCRs of 251-bp length. We
then directly applied the mouse-trained AI-TAC model on
these human sequences and predicted their accessibility across
the eight cell types from the mouse model that had a coun-
terpart in the human dataset (Dataset S7). AI-TAC thus ap-
plies the cis-regulatory logic it has learned on mouse OCRs
(including the composition of regulatory motifs and their dis-
tance preferences) to human OCR sequences to make predic-
tions about cell-type activity. The correlation between predicted
and observed accessibility profiles was significant for a large
number of these OCRs (Fig. 7A). Note that cross-species
identification of orthologous cis-regulatory sequences is very
inefficient with standard sequence alignment tools (39): with
the standard sequence alignment using LiftOver (39), only
13% of human OCRs could be aligned to any mouse OCR
(at >95% bp remap). In contrast, by reasoning about hierar-
chical motif composition, the CNN is better able to ferret out
orthologous OCRs.
We then explored the degree of conservation of the impor-

tant AI-TAC TF motifs. After fine tuning the AI-TAC model
on human data, we obtained influence scores for each filter
based on its prediction performance on the set of well-predicted
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human OCRs. We observed a striking correlation in terms
of predictive influence of a filter in mouse and human
datasets, indicating preservation of overall regulatory impact
on the immune cells profiled here (Fig. 7B). Only a few
outliers were noted (for example, Gata), which in this case,
may be explained by the addition of erythroid cells in the
human dataset.
Finally, to assess whether there exist broad classes of human

OCRs that are not predictable by the mouse model, we trained a

CNN directly on the human dataset and compared its prediction
performance over the test set of OCRs with the mouse AI-TAC
model. We observed a strong correlation between prediction
performance of the mouse and human models on these human
OCRs (Fig. 7C), with only a minor shoulder of OCRs that were
better predicted by the human-trained model. This indicates that
the regulatory code that is predictive of immune cell chromatin
activity in regulatory regions is strongly conserved between hu-
man and mouse species.
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Fig. 6. Identifying combinatorial regulatory syntax embedded in AI-TAC’s fully connected layer. (A) t-SNE representation and clustering of well-predicted
OCRs (n = 30,875) based on their scores across the last layer (695 nodes) of the trained AI-TAC model. (B) ATAC-seq intensity of OCRs across immune lineages.
(C) OCRs influenced by filters 167 (Pax5) and 260 (Ebf1) and co-occurring. (D) OCRs influenced by filters 34 (Cebp) and 255 (Spi1) and co-occurring.
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Fig. 7. AI-TAC model is predictive of human OCR accessibility profiles. (A) The trained AI-TAC model was directly applied to predict accessibility profile of
human sequences underlying OCRs across eight cell types that overlapped between mouse and human datasets. The figure shows a histogram of AI-TAC
predictions (measured by Pearson correlation between observed and the model’s predictions) on real human 251-bp sequences underlying 539,611 OCRs
(orange) vs. randomly permuted human OCR sequences. (B) Influence of AI-TAC’s filters in mouse (x axis) and human (y axis) on the basis of nullification of
each filter at a time. (C) Prediction performance (Pearson correlation) for test-set human OCRs based on AI-TAC trained on mouse data (x axis) and a model
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Discussion
Differentiated cell states and functions, deeply encoded in the
DNA sequence, unfold through the coordinated action of TFs and
of the transcriptional modifiers they co-opt. We show here that an
artificial neural network can emulate these biological decoders
and predict, based on sequence alone, cell-specific patterns of
chromatin accessibility across the entire immune system. It does so
with high accuracy for most cell type-specific OCRs, matching
biochemical validation data and in the process, rediscovering ab
initio the binding sites for known TFs. By probing the sequence
cues that the CNN detects and integrates, we infer the sequence
information that is necessary for the biological decoders to unfold
an entire immune system, yielding a broad portrait of the se-
quence motifs and TFs that govern immune cell differentiation,
strikingly conserved in human and mouse systems.
There is growing interest in applying deep learning computa-

tion to predict chromatin state and more broadly, transcriptional
activity from nucleotide sequences (7, 13). A major breakthrough
in using CNNs to accurately predict “activity profile” from se-
quence, which AI-TAC also benefits from, has been the utiliza-
tion of multitasking frameworks that model multiple prediction
tasks at once (e.g., predictions of accessibility across multiple
tissues or cell types). The multitask models can learn generaliz-
able features whose combinations are predictive of different but
related outcomes; this attribute is especially powerful in regu-
latory biology, where combinations of a finite set of sequence
motifs underlie cellular differentiation. However, the represen-
tation of training data and the criteria for providing feedback to
the model during the learning phase are of key importance, on
which AI-TAC differs from previous work, allowing it to estab-
lish accurate sequence-based prediction of chromatin state at
cell-type resolution and across the entire immune system. By
modeling continuous accessibility values across 81 cell pop-
ulations that represent fine-scale differences in immunocyte
differentiation and then measuring the model’s prediction error
based on Pearson correlation, AI-TAC parameters were opti-
mized to identify sequence features that are predictive of dif-
ferences in profiles rather than ubiquitous activity levels, a
feature that proved essential to its performance. Our study also
differs from previous work by its emphasis on robust extraction
of learned motifs and its validation with epigenomic data. To go
beyond prediction capabilities of NNs and to understand the
underlying regulatory logic learned by the model, we combined
three strategies and showed that accounting for reproducibility is
an important factor in robust extraction of sequence motifs.
The tight fit between AI-TAC’s “interpretation” and bio-

chemical data gave high confidence that they were valid pro-
jections of the true regulation of chromatin accessibility across
immunocytes. Furthermore, the cell-specific influence of these
filters recapitulated prior knowledge about cell-type specificity
for several TFs (e.g., Pax5 and Ebf1 in B cells, Eomes/Tbx21 in
NK cells, Spi1 and Cebp in myeloid cells), also reproducing and
broadening the results obtained by enrichment and regression
analysis of motifs in deoxyribonuclease hypersensitivity or
ATAC-seq data (2, 5, 40). Several observations are worth high-
lighting.

1) A high-resolution ranked landscape of chromatin regulation
across the entire immune system is provided by AI-TAC.
Even if many players were recognized, in particular by the
studies mentioned above, their dominance (Fig. 3) was not
necessarily appreciated: knockouts only identify the stage at
which a TF becomes essential for further differentiation, po-
tentially distinct from those involved in overall specification
of cell-specific chromatin architecture. Less expected was the
dominant influence of Eomes/Tbx21 filters for NK cells or of
NRs for ILC2/3, which proved quite different from T cells
(even the most differentiated NKT or effector CD8s),

contradicting the oversimplification that ILCs are basically
TCR-less T cells. This unique influence of NRs in ILC2/3,
partially shared with RORg+ Tregs and some γδT, might
prompt the speculation that these TFs and the OCRs they
control are primarily active in cells at the microbial interface;
it is also possible that these ILCs are further differentiated
than any other cells in the dataset, a stage at which the NR
family becomes more prominent.

2) T cells are different? Dominantly influential controllers were
identified for B, myeloid, and ILCs, but no strong equivalent
emerged for T cells (influenced more weakly by Lef1/Tcf7,
Tcf3, Ets, Runx, and Gata). There are some technical caveats
that might underlie this observation (e.g., redundancy or
wobble of motifs recognized by a controlling TF might reduce
the apparent influence of individual motifs, or its motif might
only be reconstructed by the model in deeper layers). These
caveats notwithstanding, one may speculate that the lack of
dominant factors is that T cell differentiation follows a dif-
ferent strategy from other lineages: that T cells are a lineage
adopted when other avenues are no longer possible (i.e., by
having terminally extinguished Spi1 and Pax5) or that the
functional and phenotypic diversity of T cells involves several
different controllers, not a single dominant master regulator.

3) Twenty-one motifs were identified by AI-TAC (SI Appendix,
Fig. S6). Some of the unannotated filters may represent
“half-sites,” perhaps mere building blocks used by the CNN
(41) or perhaps biologically relevant half-sites as reported for
NF-κB or NRSF (22, 42). Others appeared like typical TF
binding sites (short and continuous blocks of preferred ba-
ses), and they may represent unrecognized TFs or alternative
sites for known TFs and require further investigation [e.g., by
directly optimizing the ability of the model to learn complete
motifs (43)]. Also intriguing were the poorly reproducible
filters, which typically recognized scattered conserved bases;
their low individual influence and nonreproducibility in dif-
ferent training runs would suggest that they only represent
noise, but we cannot rule out that they correspond to a dif-
ferent regulatory syntax, perhaps read by noncoding RNAs.

4) The repeat structure (few tandem repeats but pervasive motif
repeats in different enhancers connected to the same gene)
suggests that eukaryotic genes do exploit cooperative multi-
meric interactions by repeats of the same factor but do so by
recruiting several spaced OCRs rather than by locally dense
tandems, a solution that may provide both transcriptional
and evolutionary flexibility.

5) TF combinations. Deeper insights of co-occurring TF motifs
were gained from combinatorial predictions (Fig. 5), again
strongly validated by biochemical data. Some associations
were expected (e.g., Pax5 and Ebf1), and the combination
of AI-TAC and ChIP-seq validation data revealed patterns
of differential association in B cell stages, as well as factors
with broadly distributed coinfluence (Tcf3 and Ets). How-
ever, AI-TAC also identified 493 significant interactions,
many previously unreported and some encompassing unan-
notated filters (e.g., filter 9, associated with NF-κB, Runx,
and Ets).

The underlying logic in this work is that, by analyzing how a
deep neural network can decipher the cis-regulatory code of im-
mune cell differentiation, we can infer how the biological network
in live cells actually does. Some caveats need to be stated, how-
ever. Choosing correlation to determine the loss function
improved predictions for variably active loci but penalized pre-
dictions of ubiquitously active OCRs. Another caveat is that
CNNs leverage repeated effects and will fail to identify very spe-
cific TF combinations that act only on one or two genes that may
nevertheless be functionally critical [e.g., the λ5 enhancer (29) or
the fine interplay between Tbx21 and Eomes during effector T cell
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differentiation (44)]. TFs have varying degrees of dependence on
sequence-specific DNA binding: none for TFs such as Aire (45)
and variable for others such as the estrogen receptor [strictly de-
pendent on a canonical motif at some loci, co-opted in a looser
manner at others (46)]. AI-TAC would clearly miss TFs that do
not rely on specific binding. Similarly, some TFs are “opportu-
nistic,” only binding to chromatin already made accessible by other
factors; FoxP3 is in this category (47), and it is interesting that no
TF of the Forkhead family was discovered by AI-TAC, suggesting
that Forkhead family factors may not be pioneers in hematopoi-
etic lineages cells as they are in mesenchymal cells (48). Recent
approaches that consider TF gene expression along with sequence
features may be able to better parse the contribution of such
opportunistic factors (49). TFs whose binding specificity is very
dependent on dimer formation or on cofactors might be difficult
for AI-TAC to recognize, although it is interesting to note that it is
able to ferret out motifs for NF-κB, a TF family notorious for its
combinatorial specificity and tolerance to variation (22). Relat-
edly, two factors competing for the same motifs may be poorly
resolved by AI-TAC: for instance, the motif bound by Bcl11a and
Bcl11b, essential for differentiation of many lymphoid, myeloid,
and even erythroid lineages (50, 51), scores in AI-TAC as mainly
influential in myeloid and B cells. Finally, AI-TAC cannot read
the influence of other means of regulation like specific DNA
methylation, and there should be potential in integrating multiple
data modalities into CNNs to further improve performance.
In conclusion, a deep learning approach to genome-wide

chromatin accessibility revealed modalities and complex pat-
terns of immune transcriptional regulators that arise directly
from the DNA sequence. Although some blind spots remain, this
draft regulatory road map should provide a foundation to graft
additional layers of human- or machine-generated results and a
springboard for experimental exploration.

Methods
The AI-TAC CNN model (SI Appendix, Fig. S1A) (https://github.com/smaslova/
AI-TAC) trained on the ImmGen ATAC-seq dataset (2) (input is DNA sequence
of 251-bp OCRs, predicts as output chromatin activity across 81 immune cell
types) consists of three convolutional and two fully connected layers, trained
using one correlation as a loss function. For parameter interpretation, 1) a
node-based strategy (7) was applied to derive 300 PWMs corresponding to
each of the first-layer filters, and 2) a gradient back-propagation strategy
(DeepLift and TFMoDisco) was applied (16). Reproducible filters (based on
PWM representation) were identified using “occurrence count” across 11
separately trained model. PWMs were annotated using TomTom (20) to
search the Cis-BP database of TFBS (19) (FDR 0.05). Filter influence values
were computed using an ablation strategy: each filter was removed in turn,
and the average of squared delta in model’s error was computed across all
examples. For biochemical validation, raw ChIP-seq datasets for Pax5 (28),
Ebf1 (28), Spi1 (52), and Tcf1 (32) downloaded from Gene Expression Om-
nibus (GEO) were peak called (53) and intersected with AI-TAC predictions.
To visualize high-order sequence logic, AI-TAC’s embedding captured by
node activation in the last shared layer was obtained (n = 1,000) and pro-
jected in two dimensions using t-SNE.

Data Availability. All ATAC-seq datasets from the ImmGen project are
available from http://www.immgen.org/ and GEO (accession no. GSE100738).
All software and scripts for generating the AI-TAC model are available from
https://github.com/smaslova/AI-TAC/. All study data are included in the ar-
ticle and SI Appendix.
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